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CONNECTIONISM AND
UNIVERSALS OF SECOND
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This article examines the implications of connectionist models of
cognition for second language theory. Connectionism offers a
challenge to the symbolic models which dominate cognitive science. In
connectionist models all knowledge is embodied in a network of simple
processing units joined by connections which are strengthened or
weakened in response to regularities in input patterns. These models
avoid the brittleness of symbolic approaches, and they exhibit rule-like
behavior without explicit rules. A connectionist framework is proposed
within which hypotheses about second language acquisition can be
tested. Inputs and outputs are patterns of activation on units
representing both form and meaning. Learning consists of the
unsupervised association of pattern elements with one another. A
network is first trained on a set of first language patterns and then
exposed to a set of second language patterns with the same meanings.
Several simulations of constituent-order transfer within this framework
are discussed.

CONNECTIONISM

In the past ten years, cognitive science has seen the rapid rise of interest in connec-
tionist models, theories of the mind based on the interaction of large numbers of
simple neuron-like processing units. The approach has already reshaped the way
many cognitive scientists think about mental representations, processing, and learn-
ing. Connectionism offers a challenge to traditional symbolic models of cognition.
Despite the powerful appeal of symbols, rules, and logic, the traditional view suffers
from a very unhuman-like brittleness. Linguistic and conceptual entities are assigned
in all-or-none fashion to categories, rules typically apply in a fixed sequence, and
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deviations from expected patterns are not handled well, if at all. In connectionist
models the brittleness is avoided because there are no discrete symbols and rules as
such; the entities that a connectionist system uses to characterize the world are fluid
patterns of activation across portions of a network. In addition, connectionism puts
the emphasis back on learning in cognitive science. In symbolic models it is often
assumed that it is enough to characterize a particular point in the process of acquisi-
tion. Most connectionists do not agree; it is how the system progresses from one state
to another that is most interesting, and connectionists have developed a variety of
new network learning algorithms to be studied and applied to particular problem
domains.

No subfield of cognitive science, including second language acquisition research,
can afford to ignore the implications of this new approach. While it is premature to
speak of a connectionist theory of linguistic behavior let alone second language
acquisition, it is possible to outline what connectionism may have to offer the field of
second language research. This is the purpose of this article.

Computational Approaches to Cognition

In order to understand connectionism, it is necessary to put it in its context as a
computational approach to the study of the mind. Like other models in the fields that
make up cognitive science, what connectionist models seek to do is to describe
cognitive processing in computational terms, that is, in terms of data structures and
the processes that operate on them, yielding outputs from given inputs. With respect
to the study of linguistic behavior, computational approaches differ from most gener-
ative models in not making a fundamental distinction between competence and
performance (Winograd, 1983). What is of interest in a computational model of
language is comprehension, production, and the representations, linguistic and other-
wise, which enable these processes. Usually such models are simulated in computer
programs, though it is important to note that for most cognitive scientists the comput-
er itself is nothing more than a tool to test the validity of the models.1

Processing in Connectionist Models

Current connectionist models, also referred to as neural networks and parallel distrib-
uted processing (PDP) models, are related to pioneering work by neuroscientists and
computer scientists in the 1940s and 1950s (McCulloch & Pitts, 1943; Rosenblatt,
1962), who were interested in the computational power of networks of simple neu-
ron-like processing units. The recent resurgence of interest in these models has been
spurred by the discovery of new learning algorithms as well as by dissatisfaction with
the achievements of classical symbolic models of cognition. Work continues on the
formal properties of networks of various types as well as on applications of these
networks to areas as diverse as the detection of explosives in airline baggage (Shea &
Lin, 1989), discovery of lexical classes from word order (Elman, 1988), and the use of
scripts in story understanding (Dolan & Dyer, 1989).

There is not space in this article to do more than introduce the basic concepts
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involved in connectionist models. For more in-depth discussions, see Rumelhart,

McClelland, and PDP Research Group (1986).

Most connectionist models share the following basic features:

1. The system's memory consists of a network of simple processing units joined by weighted

connections. Each weight is a quantity determining the degree to which the unit at the

source end of the connection activates or inhibits the unit at the destination end of the

connection.

2. The behavior of units is based loosely on that of neurons. They sum the inputs they

receive on connections and compute an activation, which is a function of the total input,

and an output, which is a function of the activation. A unit's output is passed along its

output connections to other units. The current pattern of activation on the units in the

system corresponds to short-term memory in more traditional models, and inputs and

outputs to the system take the form of patterns of activation over groups of input and

output units.

3. The analogue of long-term memory in other models is the set of weights on the network

connections. In learning models, these weights are adjusted as a consequence of

processing.

4. Processing is parallel. In most traditional models, as in conventional computers, decisions

and actions are made one at a time. In connectionist models, as in the brain, there is

activity in many places simultaneously.

5. Control is distributed. Unlike traditional cognitive models, connectionist systems have no

central executive whose job it is to determine which rule or rules are currently applicable

and to execute them. In fact, there are no rules to be executed.

Connectionist models divide into two basic categories: localist approaches (e.g.,

Cottrell, 1989; Feldman & Ballard, 1982; Gasser, 1988; Waltz & Pollack, 1985), in

which units represent particular concepts, such as BLUE,2 GLASNOST, ELVIS-PRESLEY,

INANIMATE, and TRANSITIVE-CLAUSE; and distributed approaches (e.g., McClelland, Ru-

melhart, & PDP Research Group, 1986; Kanerva, 1989; and Rumelhart et al., 1986), in

which complex concepts are distributed over many units, and each unit participates

in the representation of many concepts. Because it is the distributed models which

have attracted the most attention, are better suited for learning, and have the most

radical claims to make, I will focus on them in this article.

The interesting properties of (distributed) connectionist networks include the

following:

1. Robustness, graceful degradation: The systems do not break down when inputs are incom-

plete or errorful, or even when a portion of the network is destroyed.

2. Graded representations: The concepts that the systems acquire and make use of bear little

resemblance to the discrete categories of traditional models. Things belong to connec-

tionist categories to varying degrees, the representations continually evolve as the system

learns, and concepts are free to blend in intricate ways.

3. Fixed memory size: Because knowledge is shared in the system's connections, the addi-

tion of new knowledge does not necessarily require new units and connections.

4. Automatic generalization, rule-like behavior: As connectionist systems learn about specif-

ic patterns, they are also building the knowledge that will allow them to handle a range of

similar patterns. That is, they are making generalizations, possibly at many different levels
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of abstraction. Unlike the rules of traditional models, however, these generalizations do
not appear explicitly in the network. Rather, they arise as needed during processing.

5. Interaction of multiple sources of knowledge: Connectionist systems work by integrating
information in the form of the parallel spread of activation in many parts of the network at
once. This approach lends itself to modeling in domains where decisions are made on the
basis of diverse sorts of knowledge.

Learning in Connectionist Models

Connectionist models, at least those of the distributed type, are typically empiricist
accounts of cognition, and learning plays a central role. I will return to a characteriza-
tion of the sort of empiricism favored by connectionists later.

Most connectionist models implement one form or another of pattern association.
A pattern associator is a network which learns to associate input-output pairs, where
each input or output consists of a pattern of activation over a set of input or output
units. For example, a pattern associator might represent the tendencies for particular
odors, represented on the input units, to result in particular visual images, represent-
ed on the output units (McClelland, Rumelhart, & Hinton, 1986). The modeler may
assign particular significance to individual input and output units (typically in the
form of microfeatures such as ANIMATE, INVOLVING-CONTACT, and the like), or patterns
may be assigned in an arbitrary fashion to the particular concepts that the system is
to be given. Associations between inputs and outputs are usually mediated by one or
more layers of hidden units. These units are hidden in two senses. First, they have no
access to the environment (i.e., they are neither inputs nor outputs). Second, they are
not assigned any significance by the designer of the network; they develop their
significance as the network learns to associate inputs and outputs.

Once the network has been trained on a set of mappings, it should yield the
(approximately) correct output given an input. In the odor-to-image example, presen-
tation of a pattern representing an odor on the input units should result in the
activation of the appropriate visual pattern on the output units. Most importantly, the
network may be able to yield an appropriate output for an input pattern on which it
has not been trained if the pattern is similar enough to one or more familiar patterns.
(Traditional cognitive scientists would speak here of the extraction of a rule.) Further-
more, because of redundancy that is automatically built in as the network learns, an
incomplete or degraded input pattern may also yield an appropriate output.

Probably the most familiar example of a connectionist pattern associator is the
NETTALK system (Sejnowski & Rosenberg, 1987). In NETTALK the inputs represent
the written forms of English words and the outputs represent phonological represen-
tations of English words. The network is trained on a set of spelling-pronunciation
pairs, and on the basis of this training it is able to "pronounce" not only those words
on which it has been trained, but also a large set of unfamiliar words. At no point is
the network given any rule that would help it out; in fact, the network would not
know what to do with a rule if given one. What the network is doing is looking for
regularities in the orthography-phonology pairings that are presented to it. Most
interestingly, in the process of learning, the network arrives at some of the phonologi-
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cal categories familiar to linguists. Using cluster analysis to investigate what the
hidden layer in NETTALK is actually representing, it has been found, for example,
that certain units respond more to vowel letters and others to consonant letters.
Again it must be emphasized that these categories were not given to the network
initially; they were, rather, implicit in the patterns themselves.

An important subtype of pattern association is auto-association. Here a pattern is
associated with itself; that is, outputs are meant to be identical to inputs. A network
trained in this way can perform pattern completion: given a portion of an input, the
network can return the complete pattern. For example, the input (and output) units
might represent aspects of a visual scene. Once trained on enough of these patterns,
the system could be given a portion of a scene or a scene containing some incorrect
information on the input units and could then generate the complete, correct scene
on the output units. What makes the pattern completion idea so appealing is that it
does not matter which portion of a pattern such a network is given, as long as enough
information is provided. That is, processing can proceed in any direction. I will argue
how this permits an auto-associative system to perform both comprehension and
production using the same units.

Connectionism Versus Behaviorism

Some critics of connectionism (Fodor & Pylyshyn, 1988; Pinker & Prince, 1988)
contend that it is no more than a revival of behaviorism dressed up to look like
neuroscience. It is true that connectionist models share with behaviorism a focus on
the learning of stimulus-response (or "input-output") associations. The differences
lie in the concern of connectionists with the internal representations that are con-
structed between the inputs from and the outputs to the environment, and with the
specific mental processes that are involved in the construction of these representa-
tions (Rumelhart & McClelland, 1986b). In addition, many (though by no means all)
connectionist models involve feedback connections which would not be possible in a
strict stimulus-response framework; and connectionists are also increasingly con-
cerned with the initial structure of the networks they work with; that is, with what
could be thought of as innate "knowledge" of a sort.

SYMBOLS, RULES, AND LANGUAGE

Linguistics and the Symbolic Paradigm

With the exception of recent work within the connectionist paradigm, all of cognitive
science belongs to what has been referred to as the symbolic paradigm (Fodor &
Pylyshyn, 1988; Newell, 1980; Pinker & Prince, 1988). Despite vast differences, these
approaches agree on the validity of the basic distinction between the "software" of
the mind and the "hardware" of the brain. Much as a program or a programming
language is (ideally) independent of the type of computer that it runs on, the mind's
programs and programming language(s) are said to be describable in terms that do
not make reference to neural structures or processes. Cognition, in the symbolic view,
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consists primarily in the application of rules. A rule-based system, requires (a) a
central program to direct the system, (b) a sophisticated facility for pattern matching
to select rules appropriate for given contexts, and (c) symbols, that is, tokens which
denote other tokens or full-blown structures in memory. Symbols in rules play the
role of variables; that is, what they denote depends on the particular context in which
the rule is applied.

Modern formal linguistic theories are no exception to this dominant tendency in
cognitive science. Like rules in typical artificial intelligence (Al) systems, linguistic
rules make reference to structures such as trees and require variables. And, although
this fact is not emphasized except in computational linguistics, it must be assumed
that there is a central control guiding the process (whether the process is comprehen-
sion, production, or "derivation") and a mechanism for pattern matching to deter-
mine which rules apply to the current state of the system.

It is important to recognize that these basic aspects unite approaches which have
previously been seen as radically different accounts of linguistic knowledge and
behavior; for example, generative linguistic theories on the one hand and the natural
language processing research associated with Roger Schank and his colleagues (e.g.,
Schank & Abelson, 1977) on the other.

Connectionism and the Subsymbolic Paradigm

Connectionists reject the basic premises of symbolic cognitive science, in particular
the notion that the behavior of neurons is not relevant in accounting for cognition.
While they differ in the extent to which they take the functioning of real neurons
seriously (and none of their models could be said to be faithful representations of
neural processes), they hold that:

1. The nature of the brain constrains mental processes in important ways; in particular, the
relative slowness of the primitive operations of neurons forces one to conclude that the
brain makes use of massive parallelism in processing (Feldman & Ballard, 1982); and

2. A neurally inspired type of processing provides a better account of what is known about
mental processes than symbolic processing does, for reasons discussed earlier.

The highly constrained form of processing that characterizes connectionist mod-
els must operate without the symbols, the symbolic pattern matcher, and the central
program which are required for rule-based processing. How then are connectionist
models to account for behavior which is apparently rule-governed? Research is still
underway on the details of the answer to this question, but the usual response of
connectionists is that rules and symbols are "emergent" phenomena; that is, they
arise out of the complex interactions of more primitive elements and processes. For
this reason, connectionist approaches are said to define the subsymbolic paradigm.
The usual connectionist argument is that while a symbolic characterization may
provide a useful description of a phenomenon, it is to be understood as an approxi-
mation in the same sense as a characterization of a physical phenomenon can be
approximated in Newtonian terms, though it is more accurately understood in terms
of relativity and quantum mechanics.
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Consider the formation of the past tense in English, the best-known example of an
apparently rule-governed behavior which connectionists have succeeded in model-
ing without explicit rules. If there is one thing that formal linguists would agree on, it
is that adult native speakers of English have a set of rules for past tense formation.
This has seemed to everyone the only interpretation for the results of Berko's (1958)
classic experiments demonstrating that children as young as 5 could correctly gener-
ate past tense forms for nonsense verbs. Yet two series of simulations (Plunkett &
Marchman, 1989; Rumelhart & McClelland, 1986a) have shown that a simple connec-
tionist network can learn to generate both regular and irregular past tense forms
from verb stems without any explicit rule and to go through some of the same sorts of
stages that human learners do. Most interestingly, the model goes through the three
stages in the typical "U-shaped curve":

1. Past tense forms, including many irregulars, are simply memorized.
2. The regular "rule" begins to be acquired, and many irregular past tenses, including some

previously formed correctly, are now formed according to the regular rule.
3. Both regulars and irregulars are formed correctly.

The network's rule-like behavior is the result of the combination of many associations
of specific stem features with specific past tense features. These associations are
implemented in the weights on the connections joining input (stem) and output (past
tense) units. Each rule involves many weights, and each weight typically participates
in many rules.

What takes the place of the symbols of traditional models? Doesn't there need to
be a place or an invariant pattern in memory for concepts such as LEG, FRY, and
VELAR? The answer is that in a connectionist system it is not the case that something
either is a LEG or is not a LEG; rather, things are more or less LEGS. There might be a set
of units which would tend to be activated strongly when a leg is perceived or
imagined, but it would not be possible to draw a clear boundary around this set of
units, and each of these units would also participate in the representation of other
concepts. Thus when (more-or-less) LEG is active, any number of other concepts will
also be partially active. Note that this approach permits metaphor and analogy to be
treated as natural processes rather than as peripheral phenomena that are not ame-
nable to formalization.

There is another important way in which subsymbolic models differ from symbol-
ic ones. Much of the thinking in traditional cognitive science has revolved around
distinctions between the general and the specific. Psychologists and AI researchers
typically distinguish between instances (tokens) and classes (types). Linguists distin-
guish between grammar, embodying the general aspects of a language, and lexicon,
embodying the specific aspects; and between regular (general) processes and irregu-
lar (more specific) ones.

For connectionists, these distinctions are of degree rather than kind. A pattern of
activation over a set of units might represent a token or a whole class, the difference
being the number of units involved; that is, the extent to which the characterized
entity is specified. A set of connection weights normally embodies at once a number
of rules of different degrees of specificity. For example, in the past tense models
referred to above, there is no clear-cut distinction between the way in which the
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regular past tense rule works and the way in which an "irregular" rule (e.g., cut-cut,
beat-beat) works. This is one of the major distinctions that has been brought out
between this model and traditional accounts of morphological processes (Pinker &
Prince, 1988).

While these aspects of the subsymbolic paradigm do not endear it to generative
linguists, they are consistent with ideas that have arisen in recent years in cognitive
linguistics (Fauconnier, 1985; Fillmore, 1988; Lakoff, 1987; Langacker, 1987). Cogni-
tive linguists and other like-minded cognitive scientists emphasize the fluidity of
concepts (Hofstadter, 1985; Lakoff, 1987; Rosch, 1978), the continuous nature of the
differences between rules and exceptions (Harris, 1989; Langacker, 1987), and the
relative importance of the more specific end of the spectrum. As we have seen, these
are also features of connectionist models of cognition.

In sum, connectionists have the goal of modeling cognitive processes without the
use of symbols such as JOHN and X-BAR, without explicit rules associating inputs with
outputs, and without distinctions between general and specific concepts and pro-
cesses.

It is by now clear that some form of connectionism will figure in a general model
of human linguistic behavior. The only question is whether the role will be a minor
one, relegated to "low-level" pattern matching tasks and the learning of exceptional
behavior, or whether the connectionist account will supersede symbolic accounts,
rendering them nothing more than neat approximations of the actual messy process.
Thus far, connectionist research on language has been most convincing in demon-
strating the extent to which models can extract regularities from linguistic input and
in modeling the interactions of lexical, syntactic, and contextual information in
parsing (Cottrell, 1989; Waltz & Pollack, 1985). But there are features of linguistic
behavior which remain difficult for connectionists to simulate, and these are usually
the features which are the easiest for symbolic approaches. A central concern is
compositionality and the representation of part-whole hierarchies. Consider an ex-
ample discussed by Touretzky (1989), himself an active connectionist researcher. If a
system is trained to understand English NPs containing prepositional phrases by
being exposed to phrases such as the dog on the hood and the dog in the car, how will
that system then detect the anomaly in the dog on the hood in the carl This would
seem to require a relatively sophisticated semantics, one which can, for example,
build tentative representations of DOG ON HOOD and DOG IN CAR and then recognize that
they are incompatible. Such intermediate representations are standard fare in sym-
bolic approaches to parsing, but they do not seem to be implementable within
existing connectionist systems. Touretzky (1989) suggests that connectionists need to
build more initial structure into their models, making them in one sense more similar
to traditional models while retaining their basic processing characteristics. The main
point to be made here is that while connectionism does not yet have all of the
answers, the range of possible architectures is only beginning to be explored.

CONNECTIONISM AND UNIVERSALS

It should be clear from what has been said that Universal Grammar (UG), at least as it
is usually conceived, is not compatible with the connectionist framework. The princi-
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pies and parameters of the UG of Government and Binding (GB) Theory, for example,
are stated in terms of variables. For example, the principle that relates "0-marking" to
subcategorization states that "if a subcategorizes the position occupied by j3, then a
0-marks P" (Sells, 1985). There is no way that variables such as the a and 0 in this rule
can be "wired in" to the network at the outset.

At the same time, connectionism, with its focus on learning, tends to offer a
strongly empiricist view of cognition, and the provision for innate mechanisms specif-
ic to particular domains, though not ruled out, is something which most connec-
tionists would want to try only as a last resort. It appears that connectionist models
may be able to shed new light on the nativism issue because of their ability to
outperform previously conceived empirical systems (Walker, 1989). Two models rele-
vant to language acquisition in particular are those of Hanson and Kegl (1987) and
Elman (1988). Hanson and Kegl presented a network with a large corpus of English
sentences in which syntactic categories replaced words. On this basis alone, the
network was able to demonstrate a knowledge of a great deal of English grammar.
The researchers used an auto-associative paradigm. If, following training, their net-
work successfully reproduced an input pattern on its output units, this was counted as
a positive grammaticality judgment. Sentences viewed as ungrammatical were often
corrected by the network in its output. Most impressively, the network treated center-
embedded structures as grammatical even though the only embedded sentences it
had seen were right-embedded. Elman trained a network to perform a simple pro-
noun reference task, using sentences that had been thought to require the notion of c-
command (Reinhart, 1983). Elman's model made no use of c-command or any other
complex symbolic notion; indeed, there is probably no way his network could have
been designed to incorporate such notions. While it is still possible that some form of
innate linguistic "knowledge" will be required, as Hanson and Kegl (1987) argue,
connectionist models should give us a better idea of what this is since we will know
more about limits on the abilities of networks to extract regularities from input.

No one has proposed a set of connectionist universals for language, but we can
consider the range of possibilities that are open. Two areas in which candidate
universals might be considered are (a) the relative modifiability of particular connec-
tions, and (b) the architecture of the network. These are aspects of a system that one
would want to assume the system is "born" with.

One view (Rumelhart & McClelland, 1986b) is that connections might have vary-
ing degrees of plasticity (though this is not a feature of most existing models). Some
connections might start with fixed weights and others with weights that are modifia-
ble to different degrees. The modifiability of connections might also decrease over
time as one way of modeling the increased difficulty which adults experience with
language learning. One can also imagine connections which wait to have their
weights set on the basis of a relatively small set of inputs and then quickly become
rigid. This might be one way to implement a sort of "parameter setting", though of a
very different type than that envisioned by practitioners of GB because of the inabili-
ty of the system to make direct reference to complex syntactic constructs.

Within the range of possible network architectures are those with modular sub-
networks dedicated to particular functions. The modularity would derive from the
sparse interconnections among the subnetworks and possibly from different learning
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or activation rules for the units in the subnetworks. For example, there are several
current connectionist approaches to handling temporal patterns (e.g., Elman, 1988;
Jordan, 1986; Williams & Zipser, 1989). These require particular types of network
connectivity and particular learning rules, which would need to be characteristic of
the portion of the network concerned with linguistic form (and musical patterns) but
not necessarily characteristic of the portion which is dedicated to, say, color recogni-
tion.

While provision for some modularity in connectionist models seems to be on the
rise, it is unlikely that connectionists will accept the extreme position of some
generativists (e.g., Fodor, 1983). One of the strong points of connectionism is its
ability to model decisions made on the basis of the interaction of a variety of types of
information. Thus connectionists tend to be interactionalists rather than modularists.
This goes as well for the (non-)distinction between linguistic and non-linguistic cog-
nitive behavior, and it is also in agreement with the views of cognitive linguists (Lang-
acker, 1987).

While connectionism is not consistent with most generative notions of universals,
it is not incompatible with various proposals for processing universals. The best-
known of these are probably Slobin's "operating principles" (Slobin, 1973). Among
these principles are a number that make reference to the sequencing of items, and
recently connectionist models have been shown to provide powerful means of model-
ing the learning and processing of sequential patterns. One approach sets aside a
group of units to serve as a kind of short-term memory (Anderson, Merrill, & Port,
1989; Elman, 1988; Jordan, 1986). Because this memory has a decay built into it,
more recent items are remembered better than those which appeared further back.
Thus, such a system is more likely to make use of sequential pieces that are not
interrupted than of those that are. This is precisely the content of Slobin's Principle 4:
Avoid interruption or rearrangement of linguistic units.

A CONNECTIONIST FRAMEWORK FOR SLA RESEARCH

There is as yet no generally agreed on "connectionist linguistics" (but see Lakoff,
1989, for a first cut). What I will propose in this section is a framework which is
consistent with much connectionist thinking and also with the basic tenets of cogni-
tive linguistics, the approach which is the most compatible with connectionism. The
key idea is one of language processing as pattern completion, where a pattern
includes features of all of the types which a learner can generalize over; that is, both
features of linguistic form and of the context of the utterance. Pattern completion is
implemented in auto-associative networks.

First Language Processing and Acquisition

The framework starts from the following basic tenets:

1. Knowledge of language consists of generalizations made over linguistic pattern complexes
(LPCs), each consisting of features of form (morphosyntactic, phonological) and content
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(semantic, pragmatic, contextual). In the connectionist implementation, LPCs appear as
patterns of activation over a set of input/output units.

2. Associations between the form and content features that make up LPCs are mediated by a
complex structured layer of hidden units which comprises the lexicon/grammar of the
system. Patterns of activation over these units correspond to lexical entries as well as
syntactic structures. Representations are distributed; that is, it is not possible to isolate a
unit or set of units which reliably represent notions such as CLAUSE, SUBJECT, INITIAL-
CONSONANT-CLUSTER, and MEANING-OF-THE-WORD-MBiE

3. Language acquisition is an auto-associative process. The system is presented with partial
or complete LPCs, and on this basis associations are built up between the microfeatures of
LPCs (via the hidden units).

4. Language processing consists in the completion of partial LPCs. In comprehension, the
system starts with most of the formal features of an input pattern and, because of context,
usually some of the content features as well, and the task is to fill in the missing content. In
production, the system starts with a goal in the form of a set of content features, and the
task is to fill in the features specifying the form.

Of course, a number of questions need to be answered about the adequacy of this
model. One that will strike some readers of this article is the need to demonstrate
that the system can cope with the "poverty of the stimulus" problem, one of the
major arguments for the generative approach. That is, it must be shown that the
network, without the help of symbolic predispositions, can produce structures which
it has never been exposed to and, at the same time, recognize as anomalous other
structures which it has not been exposed to. However, as argued by Walker (1989),
the question of the adequacy for language acquisition of systems constrained only by
general cognitive mechanisms is an empirical question, not one that can be decided
by the armchair theorizing that has been thought to suffice.

Second Language Processing and Acquisition

There are three ways in which second language acquisition may differ from first
language acquisition. The latter two are relevant in particular for adult learners.

1. LI patterns may transfer to L2 (and vice versa).
2. Neurophysiological changes or cognitive developments not related specifically to lan-

guage may limit the learner's ability to acquire language or may predispose the learner to
particular acquisition strategies.

3. Contextual factors, such as the acquisition setting or the communicative demands placed
on the learner, may affect acquisition.

Transfer is precisely what connectionist models are good at. Once a network has
learned an association of a pattern PI with a pattern P2, when it is presented with a
new pattern P3, this will tend to activate a pattern that is similar to P2 just to the
extent that P3 is similar to PI. Thus, the connectionist framework provides an excel-
lent means of testing various notions about the operation of transfer in SLA. What
claims would be made about Ll-to-L2 (or L2-to-Ll) transfer within this framework? I
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will assume first of all that the primitives of form and content are the same across
languages; that is, that the basic network units over which input form and content are
represented are the same for LI and L2. The claim then would be that overlap of any
type between LI and L2 should be the basis of transfer. However, the details of how
transfer would actually operate would need to be tested through simulation for
different sets of circumstances. That is, other than these very general points, no
specific claims are made regarding transfer on the basis of features of connectionist
models. In the next section I describe a simple model which has been implemented to
test some of the transfer possibilities.

It is less clear at this stage how connectionist models would handle the second and
third aspects of second language acquisition. As noted, it is possible to model changes
in neuronal plasticity with networks, but no one has yet suggested how Piagetian
stages would emerge from connectionist processing or how a monitoring facility
would be implemented. These belong to the realm of "higher-level" cognitive pro-
cesses, which connectionists in general want to see emerge from lower-level proper-
ties but which are only beginning to be investigated within this framework. Factors
involved in interaction between language users are even more remote from current
models, since they would seem to require a relatively complete characterization of
the separate cognitive systems.

Example Simulations

A set of simple simulations was run to investigate the efficacy of using networks to
study transfer in SLA. The network for the simulations is an auto-associator in which
input patterns are mapped to identical output patterns via a layer of hidden units.3

Each input pattern is intended to represent a simple clause consisting of two words, a
subject and a verb. The input and output layers consist of three groups, a pair of
language units, representing the language being learned or processed; a set of form
units, representing the words and their positions in the clause; and a set of content
units, representing the word meanings and their roles in the proposition denoted by
the clause. The roles for this example are simply AGENT and PROCESS; that is, in the
sentence Mary sleeps, the concept MARY (the meaning of the word Mary) plays the
AGENT role, and the concept SLEEP (the meaning of the word sleep) plays the PROCESS
role. Following the terminology standard in AI models, I will refer to MARY as the filler
of the role AGENT. Figure 1 shows the basic structure of the network. Small circles
represent units, and heavy arrows signify complete connectivity between groups of
units. That is, every input unit is connected to every hidden unit, and every hidden
unit to every output unit.

Each input sentence consisted of two words, a subject and a verb, and each input
pattern represented a sentence, its meaning, and its language. To create the input
patterns, an arbitrary binary vector4 of length 7 was assigned to each word and word
meaning. For example, the word John might be assigned the vector [0110100] and
the meaning JOHN the vector [1100001]. In the input layer of the network, 14 units
represented the two words in the sentence, 7 for the word in initial position and 7 for
the word in second (final) position. For the pattern representing the sentence John
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Figure 1. Architecture of network used in simulations.
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sings, the units corresponding to the vector assigned to John are turned on or off in
the 7 first-position units, and those corresponding to the vector assigned to sings are
turned on or off in the 7 second-position units. For example, if the vector for John is
[0110100], then the second, third, and fifth units among the 7 first-position units are
turned on for a sentence beginning with the word John.5

The coding for the content units is somewhat different. Roles (only AGENT and
PROCESS for this simulation) are assigned binary vectors of length 5, and there are 35
(7x5) content units, one for each conjunction of a role element and a filler element.
Using this approach, it is possible to input more than one role-filler pair at the same
time (Dolan & Smolensky, 1989). Thus, the pattern across the 35 content units can
represent both the filler of the current AGENT and the filler of the current PROCESS. In
addition there are two units for the language, either LI or L2. LI is assigned the
vector [00] and L2 the vector [11].

Thus, a complete input pattern for the clause John sings as an L2 sentence consists
of a pattern representing the word John on the first-position form units, a pattern
representing the word sings on the second-position form units, a pattern representing
JOHN as AGENT and SING as PROCESS on the content units, and a pattern representing L2
on the language units. This complete input pattern is shown on the input units in
Figure 1, with the following assignment of vectors to tokens: John: [1010010], sings:
[0100011], JOHN: [0101001], SING: [1001010], AGENT: [10001], PROCESS: [01100], and L2:
[11]. Filled circles represent units that are on (activation 1) and empty circles those
that are off (activation 0).
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Figure 2. Sum-of-square errors for Ll and L2 patterns.

The system was trained using back-propagation (Rumelhart, Hinton, & Williams,
1986) to associate input patterns of this type with identical output patterns. For the
simulations described here, 25 hidden units6 separated the 51 (14+35+2) input and
51 output units. There was complete connectivity between the layers; thus, there
were 2,550 (2x51 x25) adjustable connections in all. A small set of words and mean-
ings was used for the training patterns: 6 verbs and verb meanings, and 6 nouns and
noun meanings. The training set consisted of randomly selected pairings of noun-
verb, AGENT-PROCESS, except that a small set of combinations was never trained on.
After training on 1,100 such patterns (many repeated, of course) the network had
learned to map input patterns to themselves with a very small error rate. The error
measure used here is the mean sum-of-squares error per pattern, that is, the sum of
the squares of the errors made on each output unit. Data for this run are shown on
the left side of Figure 2. The errors are the means over 200 (or in the case of the initial
datum, 300) training trials. Thus, the point shown at 1,000 on the abscissa in the
figure is the mean for the 900th to 1,099th trials.

Following training, the network was able to successfully complete partial input
patterns. Input patterns in which the words were missing (with form units all set to
0.25, the mean activation value for all word patterns), corresponding to a production
task, resulted in output patterns with the appropriate activation on the form units
(mean sum-of-squares error per pattern about 0.27). Input patterns in which the
content was missing, corresponding to a comprehension task, resulted in output
patterns with appropriate activation on the content units (mean sum-of-squares error
per pattern about 1.1). Results were only slightly worse for patterns which the net-
work was not trained on. For example, though the network never saw the pattern for
the sentence John drinks, it was able to correctly turn on the output units for the
words John and drinks in the first and second position groups respectively when
presented with an input pattern giving only the fillers JOHN and DRINK together with
their roles.

To test transfer to a second language, a second set of input words was then
generated. In the first 2 simulations, these bore no relation to the corresponding first
language words. In the third and fourth simulations, each differed from the cor-
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Figure 3. Sum-of-square errors for LI and L2 patterns by L2 word order.

responding LI word by only one bit. For example, in the latter simulations, the LI
vector for sings was [0101100] and the L2 vector for sings was [0101101]. After the
network had been trained on the LI patterns as described above, it was trained on
both LI and L2 patterns for a total of 2,200 more repetitions. In addition to the
difference in lexical items, the L2 in some of the simulations differed in constituent
order; that is, for these simulations the L2 had verb first and subject second. Of
interest was the speed with which the system was able to learn the L2 patterns. The
right side of Figure 2 shows pattern errors averaged over all four simulations. There
are several things to notice here. First, the LI patterns clearly suffer interference from
the L2 patterns. Even after 1,100 additional training iterations, they do not recover
their previous accuracy in any of the simulations. Not surprisingly, however, the L2
patterns remain less well known throughout. Second, though the L2 patterns are
initially difficult for the network, they are not as difficult as the LI patterns were
when they were first presented to the network. This is true even for the simulation in
which the L2 patterns differ most from the LI patterns (see Figure 5).

Figures 3, 4, and 5 present detailed results for the portion of the simulations
following the initial acquisition of LI patterns alone. Figure 3 shows the effect of
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word-order differences. It is more difficult for the network to learn the L2 patterns
when the word order differs from the LI patterns than when it is the same. This
difficulty is reflected not only in the speed with which the L2 patterns are learned but
also in the degree to which the LI patterns are interfered with. The word order
difference also seems to have less and less of an effect on mastery of the L2 (and
interference with the LI) as learning continues.

Figure 4 shows the effect of word similarity. There is some evidence of an advan-
tage when the L2 words are similar to the corresponding LI words, but again this
difference seems to disappear as more patterns are presented. Figure 5 shows the
data for only the L2 patterns for all four simulations. This brings out what appears to
be an interesting interaction between the two independent variables: the effect of
different word order is greater with similar words than it is with unrelated words.

To what extent do these results agree with the facts of transfer? It is well known
that the learning of a second language affects the knowledge of the first (Sharwood
Smith, 1983), though this has not been the focus of much research. Note that the
network is exposed to as many different L2 patterns as it has already learned in the
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LI, a feature which is not characteristic of most second learning situations, and this
exaggerates the effect of the L2 on the LI. With respect to word order and lexical
form, a traditional contrastive analysis position would hypothesize that both types of
differences would make the L2 harder to learn. More recently, it has been shown that
the details of transfer are more complex. Rutherford (1983) argues that basic constitu-
ent order does not seem to transfer. However, he does not consider beginning learn-
ers, who would correspond to this network at the point where word order does seem
to enter in. Flege (1987) found that, at the level of phonetics, similar patterns may be
more difficult to learn than those that are completely unrelated to LI patterns. For
the network, by contrast, lexical forms which are more different are (somewhat) more
difficult, at least in the early stages.7 Clearly the issue of the relative ease of learning
similar forms at phonetic, phonological, lexical, and syntactic levels is a crucial one,
and one that connectionist networks are well suited for investigating.

Finally, there is work which shows that the degree of transfer from LI to L2
depends on the extent to which the two languages are perceived as related (Keller-
man, 1978). This seems to agree with one result here: the word order difference is
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more significant when there is a relationship between the words in the two lan-
guages.

The task presented to this network is obviously a gross oversimplification of the
second language learner's task. The network has no real semantics and no sense of
time whatsoever. Both semantics (e.g., Harris, 1989; Lakoff, 1989) and temporal
processing (e.g., Elman, 1988) are active areas of current connectionist research, and
there are several ways in which the present model could be augmented to handle
these aspects in a more plausible manner.

While these results should be regarded very tentatively, they point to a possible
line of connectionist SLA research, one in which networks test our particular hy-
potheses about transfer and suggest what types of data are needed to flesh out the
transfer picture. The main conclusion to be drawn from these simulations is that,
even with this extremely simple model of the transfer process, it was impossible to
predict precisely how the network would behave. Thus, simulations have an impor-
tant role to play.

CONCLUSIONS

Thirty-three years ago Chomsky forced linguists to take seriously the limitations on
the sort of input that learners have access to. Real language in use is a messy
business, a fact that all applied linguists are certainly aware of. Chomsky argued that
the learner must somehow take this limited input and construct a clean grammar of
the language being learned, one that characterizes the competence of adult native
speakers. The picture that the adult ends up with, he claimed, is one in which
redundancy is minimized at all costs and in which neat lines are drawn between
concepts, between components of language, and between language and everything
else. It was a logical next step to posit a set of innate constraints which made the
formidable task of the language learner possible.

Connectionism now offers a radical alternative to this view. What if the adult
"grammar" is not a neat one after all? What if the best characterization of adult
"performance" is one quite unlike the idealized picture that generative theory would
have us believe in? Once we are willing to accept the possibility of an adult system in
which redundancy is rampant, concepts are fluid, metaphor is a fundamental process,
and exceptions are the rule, our picture of the learner and our research strategy
change dramatically. Rather than focusing on innate constraints, our work seeks
powerful ways of extracting regularities from the input. Using these techniques,
learners are free to examine the input and decide for themselves whether and where
lines are to be drawn.

Where does this leave SLA research? In a recent article, Frederick Newmeyer
(1987) has comforting news for the field: generative linguistics, which once appeared
to be in disarray, is converging on a number of points which can now guide future
applied research. Yet, if we look beyond the narrow confines of generative linguistics,
we see that this convergence is an illusion. The old questions about innateness, the
mind and the body, and what it means to know are being asked again, and a new set
of answers is being proposed. If radical connectionists are right, a great deal of
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rethinking will be needed in SLA theory, as elsewhere in cognitive science. This may
not be very comforting news, but there is compensation in the possibility that the end
product may be a more elegant model of acquisition, one which allows it to be
integrated into the rest of the mind, and perhaps even the brain.

NOTES

1. This is particularly true for connectionists, who, unlike many other cognitive scientists, do not view the
mind as analogous to a digital computer (though connectionist models, like any other computational models,
can be simulated on digital computers).

2. Throughout this article I will use small capital letters to denote conceptual entities, to be distinguished
from words, which will appear in italics. Thus, BLUE is intended to be the meaning of blue.

3. This is not the only way to implement auto-association. Another possibility makes use of a single layer
of units representing both inputs and outputs (Hinton & Sejnowski, 1986). However, learning is generally not as
efficient in such models.

4. That is, an ordered list, each of whose elements is either 0 or 1.
5. A more realistic approach to sequencing, in which words appear within the same group of units at

different times, is also possible (Elman, 1988).
6. There is as yet no simple way to determine how many hidden units a particular system needs. Thus, no

particular significance should be attached to the number 25.
7. It is possible that this is a "floor effect," that is, that the network has reached a point at which further

improvement is either impossible or very gradual, resulting in a minimization of differences that were
significant at earlier stages.
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